A proof for a conjecture on the Randić index of graphs with diameter

نویسندگان

  • Jianxi Liu
  • Meili Liang
  • Bo Cheng
  • Bolian Liu
چکیده

The Randić index R(G) of a graph G is defined by R(G) = ∑ uv 1 √ d(u)d(v) , where d(u) is the degree of a vertex u in G and the summation extends over all edges uv of G. Aouchiche et al. proposed a conjecture on the relationship between the Randić index and the diameter: for any connected graph on n ≥ 3 vertices with the Randić index R(G) and the diameter D(G), R(G) − D(G) ≥ √ 2 − n+1 2 and R(G) D(G) ≥ n−3+2 √ 2 2n−2 , with equalities if and only if G is a path. In this work, we show that this conjecture is true for trees. Furthermore, we prove that for any connected graph on n ≥ 3 vertices with the Randić index R(G) and the diameter D(G), R(G) − D(G) ≥ √ 2 − n+1 2 , with equality if and only if G is a path. © 2011 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Randić index and Diameter of Chemical Graphs

Using the AutoGraphiX 2 system, Aouchiche, Hansen and Zheng [2] proposed a conjecture that the difference and the ratio of the Randić index and the diameter of a graph are minimum for paths. We prove this conjecture for chemical graphs.

متن کامل

On the harmonic index and harmonic polynomial of Caterpillars with diameter four

The harmonic index H(G) , of a graph G is defined as the sum of weights 2/(deg(u)+deg(v)) of all edges in E(G), where deg (u) denotes the degree of a vertex u in V(G). In this paper we define the harmonic polynomial of G. We present explicit formula for the values of harmonic polynomial for several families of specific graphs and we find the lower and upper bound for harmonic index in Caterpill...

متن کامل

On the Higher Randić Index

Let G be a simple graph with vertex set V(G) {v1,v2 ,...vn} . For every vertex i v , ( ) i  v represents the degree of vertex i v . The h-th order of Randić index, h R is defined as the sum of terms 1 2 1 1 ( ), ( )... ( ) i i ih  v  v  v  over all paths of length h contained (as sub graphs) in G . In this paper , some bounds for higher Randić index and a method for computing the higher R...

متن کامل

The Randić index and the diameter of graphs

The Randić index R(G) of a graph G is defined as the sum of 1 √dudv over all edges uv of G, where du and dv are the degrees of vertices u and v, respectively. Let D(G) be the diameter of Gwhen G is connected. Aouchiche et al. (2007) [1] conjectured that among all connected graphs G on n vertices the path Pn achieves the minimum values for both R(G)/D(G) and R(G) − D(G). We prove this conjecture...

متن کامل

On a Relation Between Randić Index and Algebraic Connectivity

A conjecture of AutoGraphiX on the relation between the Randić index R and the algebraic connectivity a of a connected graph G is: R a ≤ ( n− 3 + 2√2 2 ) / ( 2(1− cos π n ) ) with equality if and only if G is Pn, which was proposed by Aouchiche et al. [M. Aouchiche, P. Hansen and M. Zheng, Variable neighborhood search for extremal graphs 19: further conjectures and results about the Randić inde...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Appl. Math. Lett.

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2011